宝利彩票| -(中国)百科词条
宝利彩票2024-01-05

用独特设计语言讲好中国故事******

  作者:郭春方(吉林大学艺术学院院长、文学院博士生导师、一级教授,北京2022冬残奥会吉祥物“雪容融”设计团队负责人)

  党的二十大报告强调:“推进文化自信自强,铸就社会主义文化新辉煌。”近些年来,我国不断推动中华优秀传统文化创造性转化、创新性发展。

  2022年,举世瞩目的北京冬奥会、冬残奥会中,艺术设计将“中国式浪漫”的民族风带向国际,真正做到在全球化语境中生动地表达“中国性”。令海内外民众感受到,中国设计是一门能够生动阐释中国美学精神、促进中华优秀传统文化焕发新的生机与活力的艺术语言。

  早在北京冬奥会的筹备过程中,北京冬奥组委在会徽、吉祥物、奖牌、场馆、开闭幕式等全流程设计环节中,充分融入中华文化元素,提炼民族文化符号,对新时代中国文化意象进行解读。为时代画像、为时代立传、为时代明德,在记录时代风采的同时,通过奥运赛事,突破不同文化意识形态下人们的认知差异,向世界展现中国文化魅力、传播中国特色审美价值体系。

  设计语言展现文化价值。近些年来,奥运会吉祥物作为承载着奥林匹克运动精神与主办国文化形象的重要载体,越来越受到国际奥林匹克委员会及各主办国的关注与厚爱。如今,吉祥物已不再是单一的公共符号象征,更转变为一个承载着主办国文化精神、地域特色、民族品格的视觉文化符号。

  2019年9月17日,2022年北京冬残奥会吉祥物“雪容融”正式发布。它从一个普通的红灯笼,变为一个担当着使命职责的北京冬奥会的使者,设计团队先后为“雪容融”的灯笼形象加入了雪、如意、鸽子、天坛的形象,融入了剪纸的元素、发光的寓意和中国正月十五“雪打灯”的美好愿景,为红灯笼赋予文化内涵、注入奥林匹克精神、融入优秀的中国传统文化元素。

  “冰墩墩”和“雪容融”作为2022年北京冬奥会和冬残奥会的吉祥物,先后随“天问一号”着陆火星,随“嫦娥五号”登陆太空,受到全世界民众的关注与喜爱,出现了“墩融难求”“过夜式排队”的抢购热潮。

  据国际奥委会发布的《北京冬奥会市场营销报告》,在特许经营方面,北京冬奥会吉祥物相关特许商品的销量占全部特许商品的69%。时至今日,“冰墩墩”和“雪容融”仍是深受各年龄段群众喜爱的奥运吉祥物,“一户一墩”“一户一融”仍是人们热议的文娱话题,其周边文创产品在官方销售平台多次售罄脱销,在产生深远文化影响的同时,也带来了不可小觑的市场价值和经济效益。

  设计创作讲述中国故事。中国设计是具有传统美学精神、艺术哲学思想与民族文化内涵的时代产物,是反映中华民族精神面貌与审美趣味的文化沉淀,是能够服务于国家需求并引领结构创新的艺术符码。

  艺术与设计的形式是多种多样的,也是悄无声息沁人心脾的。“来时迎客松,别时赠折柳”,在北京冬奥会的开幕式上,耀眼的烟花以享有“国宝”之称的黄山迎客松图案绽放在鸟巢上空,向世人展示中国人民热情、好客的美好品格;闭幕式上,伴随着“人生难得是欢聚,唯有别离多”的悠扬音乐,舞蹈演员生动演绎“折柳寄情”。

  开幕式倒计时短片中,每一秒钟对应着一个节气、一句古诗的设计,令观众眼前一亮。作为我国历史悠久的农业耕作时序、节令习俗,二十四节气记录着四季的更迭和时光的变迁,是在百姓物质生产生活中逐步形成的民俗文化产物;闭幕式上,依照中国民间“虎头鞋”的设计造型,以十二生肖为设计元素,打造了十二辆生肖造型的冰鞋车。孩子们推动着冰鞋车在赛场滑动,车轮滑动的痕迹钩织起中国结的造型轮廓。二十四节气与十二生肖的设计巧思前后呼应,中华文化元素令世界瞩目。

  中国作为主办国,在冬奥会、冬残奥会不同环节的设计中,充分发挥主场优势,创新运用冬奥资源,将中华优秀传统文化通过冬奥会这一载体,实现了全球范围的广泛传播。《北京冬奥会市场营销报告》数据显示,2022年北京冬奥会创造了历届冬奥会收视人数的记录,全球共有20.1亿人观看,相较4年前的平昌冬奥会观看人数,增长5%。在文化的传播与输出过程中,冬奥会注重中国语境和国家文明的坚守,注重全球共识性与民族个性的融通,为世人带来了高度的美学享受,向世界展示中国文化的绰约风姿。

  优秀的设计创作是传承中华文明的艺术介质,是叙述中国美学的时代标识,是承载民族精神的文化载体,具有文化联结作用。北京冬奥会在艺术创作与文化传播层面所带来的深远影响,令我们更加坚信,新时代的设计创作必须坚守中华文化立场,坚定不移地践行文化传承创新的责任与使命,坚持以人民为中心的创作导向,将目光聚焦于大气磅礴的民族故事,创作具有家国情怀、体现民生情怀、能够完成宏大叙事的艺术作品,产生中国艺术的影响力、感召力和塑造力,令世界看到、听到、感受到更加生动、真实的中国。

  《光明日报》( 2022年12月28日 13版)

宝利彩票

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

宝利彩票地图